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Abstract. We study the QCD scattering amplitudes for q̄q→ gg and q̄q→ ggg where q is a massive fermion.
Using a particular choice of massive fermion spinor we derive compact expressions for the partial spin am-
plitudes for the 2→ 2 process. We then investigate the corresponding 2→ 3 amplitudes using the BCFW
recursion technique. For the helicity conserving partial amplitudes we present new expressions, but we were
unable to treat the helicity-flip amplitudes recursively, except for the case where all the gluon helicities
are the same. We therefore evaluate the remaining partial amplitudes using standard Feynman diagram
techniques.

1 Introduction

In the last two years there has been dramatic progress in
the calculation of multi-particle scattering amplitudes in
quantum field theory. Following Witten’s [1] discovery of
a connection between QCD amplitudes and twistor string
theory, a calculational technique [2] was found which has
come to be known as ‘the CSW construction’. It amounts
to an effective scalar perturbation theory, in which MHV
amplitudes are elevated to the status of vertices, con-
nected by scalar propagators. This scheme found wide ap-
plication [3–8], though it turned out that there was an
even more efficient way to calculate scattering amplitudes.
Britto, Cachazo, Feng and Witten found a recursion rela-
tion [9, 10] which, by shifting momenta, takes advantage
of the analytic properites of tree amplitudes. Use of the
BCFW recursion relation led easily to very compact ex-
pressions. Originally applied to purely gluonic tree ampli-
tudes, the recursion has since been extended to include
fermions [11, 12], gravitons [13] and loop amplitudes [14–
17]. As well as perhaps giving hints of as yet unknown
mathematical structure beyond the standard model, these
developments are potentially important for the calculation
of standard model backgrounds at colliders such as the
LHC. The more accurately the relevant cross sections are
known, the higher the discovery potential of the machine
will be.
One area of very recent progress is the calculation

of amplitudes involving massive fermions. It was shown
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in [18] how to generalize supersymmetric Ward Identi-
ties [19, 20] to include massive particles. In this way, dif-
ferent amplitudes involving fields belonging to the same
supersymmetric multiplet are related by a rotation. For
instance [21], amplitudes involving quarks and gluons are
related by SWIs to amplitudes involving scalars and glu-
ons, and these have been calculated in [22]. The off-shell
Berends–Giele [23] recursion has also proved useful [24].
Tree amplitudes with massive fermions are required as in-
put within the unitarity [25, 26] method to calculate 1-loop
amplitudes, and to this end [27] provides four- and five-
point amplitudes with D-dimensional fermions, calculated
using BCFW recursion.
The recursion relations were extended in [28] to in-

clude massive fermions, and in [29] four-point amplitudes
involving two massive quarks and two gluons were calcu-
lated. Five-point amplitudes with massive fermions have
so far not been treated using BCFW recursion. The goal
of the present work is to explore the utility of BCFW re-
cursion to four- and five-point amplitudes with massive
fermions. We find that a treatment of massive fermion
spinors introduced some twenty years ago in [30] proves
to be very useful. We first outline the details of this mas-
sive spinor basis, and show that 2→ 2 scattering pro-
cesses in QCD can be written in a form which is ideally
suited for use in BCFW recursion. In Sect. 4 we use the
recursion relations to derive new, compact expressions for
certain q̄q→ ggg partial amplitudes. Those partial ampli-
tudes which we could not treat recursively are evaluated
using Feynman diagrams in Sect. 5. Finally, we present our
conclusions.
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2 Spinor products

For many years amplitudes involving massless momenta pi
and pj have been expressed in terms of spinor products,

[ij] = ū+(pi)u
−(pj) and 〈ij〉= ū−(pi)u

+(pj) . (1)

In this way amplitudes find their simplest expression.
The spinors in question can be thought of either as 2-
component Weyl or 4-component Dirac spinors. Numerical
evaluation of such amplitudes involves the use of the stan-
dard formulae for the spinor products in terms of the
momentum 4-vectors. Following [30], let us first introduce
two 4-vectors k0 and k1 such that

k0 ·k0 = 0 , k1 ·k1 =−1 , k0 ·k1 = 0 . (2)

We now define a basic spinor u−(k0) via

u−(k0)ū
−(k0) =

1−γ5

2
/k0 , (3)

and choose the corresponding positive helicity state to be

u+(k0) = /k1u
−(k0) . (4)

Using these definitions it is possible to construct spinors for
any null momentum p as follows:

uλ(p) =
/p u−λ(k0)
√
2p ·k0

, (5)

with λ = ±. Note that this satisfies the massless Dirac
equation /pu(p) = 0, as required. We can now simply evalu-
ate spinor products. For example,

[ij] = ū+(pi)u
−(pj) (6)

=
(pi ·k0)(pj ·k1)− (pj ·k0)(pi ·k1)− iεµνρσk

µ
0 p
ν
i p
ρ
j k
σ
1√

(pi ·k0)(pj ·k0)
.

(7)

A similar expression is obtained for the angle product 〈ij〉.
The arbitrary k0 and k1 can now be chosen so as to yield
as simple an expression for the product [ij] and 〈ij〉 as pos-
sible, to facilitate numerical evaluation of the amplitudes.
The choice1

k0 = (1, 0, 0, 1) , (8)

k1 = (0, 0, 1, 0) (9)

is a good one, giving the familiar

[ij] = (pyi +ip
x
i )

[
p0j −p

z
j

p0i −p
z
i

] 1
2

− (pyj +ip
x
j )

[
p0i −p

z
i

p0j −p
z
j

] 1
2

.

(10)

1 The notation is kµ = (k0,k).

2.1 Massive spinors

To evaluate spinor products involving massive spinors, we
need to find a definition analogous to (5). One possibility is
that outlined in [30],

uλ(p) =
(/p+m)u−λ(k0)
√
2p ·k0

, (11)

which satisfies the massive Dirac equation, (/p−m)uλ(p)
= 0. The m in (11) is positive or negative when uλ(p) de-
scribes a particle or antiparticle respectively. This defin-
ition has the virtue2 of being smooth in the limit m→ 0.
We will use (11) to evaluate products involving massive
spinors.
It is easily seen that the familiar [. .] and 〈. .〉 products

take the same form for massive spinors as they do for mass-
less ones. Explicit mass terms drop out due to various trace
theorems. However, the product of like-helicity spinors is
now non-zero:

(ij) = ū±(pi)u
±(pj) (12)

=mi

(
pj ·k0
pi ·k0

) 1
2

+i↔ j (13)

=mi

(
p0j −p

z
j

p0i −p
z
i

) 1
2

+ i↔ j , (14)

where in the last line we have used k0 as given in (8).
Note that the like-helicity product is the same whatever
the helicity of the spinors involved, and that we use a round
bracket as a shorthand notation for it.
We have been using the word ‘helicity’ to refer to the

spin projection of massive fermions, but in fact this is only
justified if the projection is onto the direction of the mo-
mentum vector, and it is not obvious that this is the case.
There exists a unique polarization vector, though it de-
pends on the arbitrary k0,

σµ =
1

m

(
pµ−

m2

p ·k0
kµ0

)
. (15)

The spinors (11) satisfy

(
1−λγ5/σ

)
uλ = 0 . (16)

We see that besides the momentum p there is an additional
contribution to the polarization vector proportional to k0.
Suppose we have an antifermion i and fermion j in the
initial state and they approach along the z axis, in the posi-
tive and negative directions respectively. If we choose k0 to
be a unit vector in the z direction, i.e.

k0 =
(
1, 0, 0, 1

)
, (17)

2 Care is needed when pk0 also vanishes in this limit, as we
will discuss later.
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Fig. 1. Diagrams contributing to the
color-ordered partial amplitude for the
process q̄+(p1)q

−(p2)→ g
+(p3)g

−(p4)

then for the momenta3

pi =
(
E, 0, 0, βE

)
, (18)

pj =
(
E, 0, 0,−βE

)
(19)

we have the following polarization vectors:

σµi =
1

mi

(
−Eβ, 0, 0,−E

)
, (20)

σµj =
1

mj

(
Eβ, 0, 0,−E

)
. (21)

If we recall that mi is negative because i is an antiparti-
cle, then we see that each polarization vector points in the
same direction as the corresponding momentum, so that
the spinors uλ(p) are indeed helicity eigenstates for this
choice of k0. However, choosing k0 to be parallel to one of
the particle’s momenta results, in the massless limit, in the
denominators of products such as that in (14) vanishing.
By being careful to take the limit algebraically this does
not present a problem4. But it should be noted that in such
cases products like (ij) do not necessarily vanish in the
massless limit. We can sidestep this issue by choosing a dif-
ferent k0, though we could not then talk of the helicity of
the fermion.

2.2 Example: q̄q→ gg

To demonstrate the use of the massive spinor products
described in the previous section we calculate the helic-
ity amplitudes Mλ1λ2λ3λ4 for the simple QCD process
q̄λ1(p1) q

λ2(p2)→ gλ3(p3) gλ4(p4). The λ1, λ2 = ± labels
on the quarks refer to their spin polarizations in the sense
already indicated. If we choose k0 appropriately then they
can be thought of as helicity labels. We will evaluate the
partial (color) amplitudes for the above scattering process,
i.e. we consider contributions only from those diagrams
with a particular ordering of the external gluons. The full
color-summed amplitudes can then be recovered by insert-
ing appropriate color factors, as described in Appendix B.
We first consider the M+−+− partial amplitude, for

which there are two Feynman diagrams, shown in Fig. 1.

3 β =
(
1− m

2

E2

)1/2

4 If we take k
µ
0 = (1, 0, sin θ, cos θ), then for the momenta de-

fined in (18) and (19), with mj = −mi =m, we have (ij) =

−2mβ cos θ(1−β2 cos2 θ)−1/2. Thus (ij) ∼O(m) asm→ 0 ex-
cept if θ = 0◦ when (ij) ∼O(E).

We will express them in terms of massive spinor products.
For the slashed gluon polarization vectors we use

/ε
+(p, k) =

√
2
u+(k)ū+(p)+u−(p)ū−(k)

〈kp〉
, (22)

/ε
−(p, k) =

√
2
u+(p)ū+(k)+u−(k)ū−(p)

[pk]
, (23)

where k is a (null) reference vector which may be chosen
separately for each gluon. Different choices of the reference
vector amount to working in different gauges. The choice
k3 = p4 and k4 = p3 is particularly convenient in this con-
text, as Diagram B vanishes in this gauge. We have for the
other diagram

ū+(p1)
/ε
−(p4)√
2

/p2− /p3+m

(p2−p3)2−m2
/ε
+(p3)√
2
u−(p2) , (24)

which simplifies easily to

ū+(p3) /p2u
+(p4)

×
ū+(p1)

[
u−(p3)ū

−(p4)+u
+(p4)ū

+(p3)
]
u−(p2)

4 p3 ·p4 p4 ·p1
,

(25)

so that

M+−+− = [3|2|4〉
[13](42)+(14)[32]

4 p3 ·p4 p4 ·p1
. (26)

As promised, we are left with an expression for the ampli-
tude in terms of vector products and massive spinor prod-
ucts.
We next consider the otherMλ1λ2+− amplitudes. It is

interesting to note that these are directly obtained from
theM+−+− amplitude simply by changing the type of cer-
tain brackets. Thus

M+++− = [3|2|4〉
[13]〈42〉+(14)(32)

4 p3 ·p4 p4 ·p1
, (27)

M−−+− = [3|2|4〉
(13)(42)+ 〈14〉[32]

4 p3 ·p4 p4 ·p1
, (28)

M−++− = [3|2|4〉
(13)〈42〉+ 〈14〉(32)

4 p3 ·p4 p4 ·p1
. (29)

Those amplitudes where the gluons have helicities (− +)
can be obtained directly from the ones above by complex
conjugation.
Let us now examine the case where the gluons have the

same helicity. By direct calculation we find

M−−++ =m[43]
〈13〉(42)−〈14〉(32)

〈34〉2 2 p4 ·p1
, (30)
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from which we deduce

M++++ =m[43]
(13)〈42〉− (14)〈32〉

〈34〉2 2 p4 ·p1
, (31)

M+−++ = 0 , (32)

M−+++ =m[43]
〈13〉〈42〉− 〈14〉〈32〉

〈34〉2 2 p4 ·p1
, (33)

=
m[34]〈12〉

〈34〉 2 p4 ·p1
, (34)

where in the last line we have used the Schouten iden-
tity. The amplitudes with two negative helicity gluons are
obtained via complex conjugation. There are several inter-
esting things to note about these results. First, the ampli-
tudeM+−++ vanishes (for any choice of k0) because of the
identity5 (13)(42)− (14)(32) = 0. Second, when k0 is par-
allel to the line of approach of the fermions (i.e. when we
work in the helicity basis) then the product 〈12〉, and hence
M−+++, vanishes.
We have verified that when squared and summed over

spins and colors, the set of 2→ 2 scattering amplitudes
given above matches the well-known result (see for ex-
ample [31]) calculated using Feynman diagrams and ‘trace
technology’, namely

∑

colors

∑

spins

|M |2 = 256

(
1

6τ1τ2
−
3

8

)

×

(
τ21 + τ

2
2 +ρ−

ρ2

4τ1τ2

)
, (35)

where

τ1 =
2p1 ·p3
s
, τ2 =

2p1 ·p4
s
,

ρ=
4m2

s
, s= (p1+p2)

2 . (36)

Finally, the m→ 0 behavior of the spin amplitudes
can easily be read off from the expressions given above.
For example, if E denotes the typical scale of the 2→ 2
scattering6, then in them/E→ 0 limit we have

M++±∓, M−−±∓ ∼O(1) ,

M+−±∓, M−+∓± ∼O(m/E) ,

M++±±, M−−∓∓ ∼O(m2/E2) ,

M+−−−, M−+++ ∼O(m/E) ,

M+−++, M−+−− = 0 . (37)

Note that in deriving these results we have assumed that k0
is not directed along any of the particle momenta, so that
all (ij) spinor products are O(m) in the m→ 0 limit, and
〈ij〉, [ij] products areO(E). If on the other hand we choose
the (fermion) helicity basis by taking k0 in the direction of

5 See Appendix A for a list of identities and notation.
6 We explicitly exclude zero angle scattering.

(say) p1, then (37) becomes

M+−±∓, M−+∓± ∼O(1) ,

M+−±±, M−+∓∓ = 0 ,

M++±∓, M−−∓± ∼O(m/E) ,

M++++, M−−−− ∼O(m/E) ,

M−−++, M++−− ∼O(m3/E3) . (38)

3 BCFW recursion

In [9] Britto, Cachazo and Feng introduced new recur-
sion relations for amplitudes involving gluons. The recur-
sion involved on-shell amplitudes with momenta shifted
by a complex amount. Later [10], the same authors with
Witten gave an impressively simple and general proof of
the recursion relations. They have since been successfully
applied to amplitudes involving fermions [11, 12] and gravi-
tons [13]. Risager [32] has demonstrated how they are re-
lated to the earlier ‘MHV rules’, providing a proof of the
latter using an extended form of the BCFW recursion with
different shifts to those described below. There has also
beenmuch progress at 1-loop level [14–17], which has dove-
tailed nicely with the earlier unitarity work [25, 26].
We begin by choosing two massless7 particles i and j

whose slashed8 momenta we shift as follows:

/pi→ /̂pi = /pi+ z/η ,

/pj → /̂pj = /pj− z/η , (39)

where

/η = u
+(pj)ū

+(pi)+u
−(pi)ū

−(pj) (40)

is such that both pi and pj remain on-shell. Using the famil-
iar spin-sum condition,

∑

λ

uλ(p) ūλ(p) = /p (41)

we can re-express the shift (39) as a shift of spinors:

u+(pi)→ u
+(p̂i) = u

+(pi)+ z u
+(pj) , (42)

ū−(pi)→ ū
−(p̂i) = ū

−(pi)+ z ū
−(pj) , (43)

ū+(pj)→ ū
+(p̂j) = ū

+(pj)− z u
+(pi) , (44)

u−(pj)→ u
−(p̂j) = u

−(pj)− z u
−(pi) . (45)

In the Weyl spinor notation we are shifting λi and λ̃j .
For massless particles, Dirac 4-spinors are effectively two
copies of aWeyl 2-spinor, hence the four shifts of (42)–(45).
Notice that there is no symmetry between i and j – they
are treated differently.

7 It should be noted that by only hatting massless external
legs we are restricting ourselves to amplitudes with at least two
massless particles.
8
/p= γ

µpµ
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The amplitude is now a complex function of the param-
eter z. What the authors of [10] showed was that we can
use the analytic properties of the amplitude as a function
of z to glean information about the physical case z = 0. In
particular, we get a recursion relation which can be stated
as

An =
∑

partitions

∑

s

AL(p̂i, P̂
−s)

1

P 2−m2P
AR(−P̂

s, p̂j) ,

(46)

where the hatted quantities are the shifted momenta. In
fact, this is only valid if the helicities of the marked par-
ticles are chosen appropriately. The crucial property which
must be retained if (46) is to hold is that the shifted ampli-
tude must vanish in the limit z→∞. There are rules [10,
11, 28, 29] detailing which marking prescriptions are per-
mitted in different cases. For our purposes, we will be on
safe ground if the shifted gluons have helicites (hi, hj) =
(+,−) or (±,±).
This method of calculation is particularly efficient be-

cause much of the computational complexity encountered
in a Feynman diagram calculation is avoided since the
lower point amplitudes AL and AR can be maximally sim-
plified before being inserted in (46).
The sum is over all partitions of the particles into a ‘left’

group and a ‘right’ group, subject to the requirement that
particles i and j are on opposite sides of the divide. The
sum over s is a sum over the spins of the internal particle.
Each diagram is associated with a particular value for the
complex parameter z, which can be found via the condi-
tion that the internal momentum P̂ is on-shell. Note that
P̂ is always a function of z because of the restriction that
the marked particles i and j appear on opposite sides of the
divide.
One useful point to note in practice is that three-point

gluon vertices vanish for certain marking choices. In par-
ticular, for the j side of the diagram a gluon vertex with
helicites (++−) vanishes, as does the combination (−−+)
on the i side. This was pointed out in [9].
We will be concerned in this work with the process q̄q→

ggg, and so we will encounter recursive diagrams connected
by an internal fermion, the propagator of which is, in this
formalism, the same as that of a scalar. Following [29], we
‘strip’ fermions from the lower point amplitudes which feed

Fig. 2. Recursive diagrams contributing
to q̄+(p1)q

−(p2)→ g
+(p3)g

−(p4)g
+(p5)

the recursion and write

An =
∑

partitions

∑

s

AL(p̂i, P̂
∗)
us(P̂ )ūs(P̂ )

P 2−m2P
AR(−P̂

∗, p̂j) ,

(47)

=
∑

partitions

AL(p̂i, P̂
∗)
/̂P +mP
P 2−m2P

AR(−P̂
∗, p̂j) . (48)

where P ∗ shows that the amplitude has been stripped of
this external spinor wave-function. By way of example, let
us reconsider the process q̄+1 q

−
2 → g

+
3 g
−
4 . We mark the glu-

ons such that i= 3 and j = 4. Then there is one recursive
diagram,

ū+(p1)
/ε
−(p̂4)√
2

/p2− /̂p3+m

(p2−p3)2−m2
/ε
+(p̂3)√
2
u−(p2) . (49)

With the shifts we have chosen, the hats on the polar-
ization vectors can be removed. The shifted part of the
internal propagator is killed by either of the polarization
vectors. So in fact all the hats can be removed in (49),
which is then identical to the Feynman diagram expres-
sion (24).

4 q̄q→ 3g from BCFW recursion

The four-point amplitudes we derived in Sect. 2 are in such
a form that it is trivial to strip a fermion off in the man-
ner described above. This means that they are particularly
convenient for use in BCFW recursion. Consider the pro-
cess q̄+1 q

−
2 → g

+
3 g
−
4 g
+
5 , for which there are three recursive

diagrams, shown in Fig. 2. We choose the marking pre-
scription i= 3, j = 4.
The two diagrams with internal gluons both vanish,

due to the vanishing of M+−++ and the vanishing of the
(++−) gluon vertex with the shifts we have chosen. For
the remaining diagram we use

M+−−+ =−[4|1|3〉
(13)[42]+ [14](32)

4 p3 ·p4 p4 ·p1
, (50)

and we strip the fermion u−(p2), leaving

M+•−+ =−[4|1|3〉 ū+(p1)
u+(p3)ū

+(p4)+u
−(p4)ū

−(p3)

4 p3 ·p4 p4 ·p1
.

(51)
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After the appropriate relabelling this can be used in Dia-
gram A, which can then be written

A=−[5|1|4̂〉 ū+(p1)
u+(p̂4)ū

+(p5)+u
−(p5)ū

−(p̂4)

4 p5 · p̂4 p5 ·p1

×
(/p2− /̂p3+m)

(p2−p3)2−m2
/ε+(p̂3)√
2
u−(p2) . (52)

Due to our choice of marking, all the hats in the numerator
can be removed. The shifted part of the propagator is killed
by the gluon polarization vector. We are left with

M+−+−+ = [5|1|4〉

×

[
m(14)(42)[53]+ [15](42)[3|2|4〉− (14)[32][5|1|4〉

8 p5 ·p1 p2 ·p3 p̂4 ·p5 〈43〉

]
.

(53)

We can work out z from the requirement that P̂ 2 = (p2−
p̂3)
2 =m2, and we find

z =
−2 p2 ·p3
[3|2|4〉

. (54)

The product p̂4p5 is then

p̂4 ·p5 = (p4− z η) ·p5 (55)

= p4 ·p5+
p2 ·p3
[3|2|4〉

[3|5|4〉 . (56)

The result (53) is much more compact than the expression
obtained from a Feynman diagram calculation, with which
it agrees. See Sect. 5 for the Feynman results for this pro-
cess in terms of massive spinor products. We have checked
that the expression (53) behaves as expected in the soft
gluon limit. That is, as a particular gluon becomes soft, the
amplitude factorizes into a 2→ 2 amplitude multiplied by
a universal ‘eikonal factor’.

4.1 Results for helicity conserving amplitudes

Here we give all the helicity conserving QCD amplitudes
for q̄q→ ggg. By helicity conserving we mean those ampli-
tudes where the spin polarizations of the fermions are +−,
in the sense described in Sect. 2.Whether these labels actu-
ally correspond physically to helicity depends on the choice
of k0. We choose to mark adjacent gluons, so that each am-
plitude has contributing recursive diagrams of the form of
Fig. 2a and b; that is, we have a diagram with an internal
fermion and a diagram with an internal gluon. The vanish-
ing of the 2→ 2 amplitude M+−++ simplifies those cases
where there is a majority of positive helicity gluons. In par-
ticular, the diagrams with an internal gluon vanish. In the
remaining cases, we evaluate such diagrams in the same
way as in [9], using identities such as

[AP̂ ] =
[A|P |i〉

〈P̂ i〉
, (57)

〈P̂B〉=
[j|P |B〉

[jP̂ ]
, (58)

with i and j as in (39). These identities hold only when A,
B and the marked particles i and j are massless.
The results presented here are valid for arbitrary spin

polarizations. Choosing a polarization basis amounts to
choosing the vector k0, and when this is done the expres-
sions below will simplify. In the helicity basis for example,
in which we choose k0 to be parallel to the line of approach
of the fermions, the building blockM+−−− vanishes. This
causes the first term in each of the mostly-minus ampli-
tudes below to vanish:

M+−+−+ = [5|1|4〉

×

[
m(14)(42)[53]+ [15](42)[3|2|4〉− (14)[32][5|1|4〉

8 p5 ·p1 p2 ·p3 p̂4 ·p5 〈43〉

]

(59)

where i= 3, j = 4 and

p̂4 ·p5 = p4 ·p5+
p2 ·p3
[3|2|4〉

[3|5|4〉 ,

M+−++− = [4̂|1|5〉

×

⎡

⎢⎢
⎣

(
m[14̂][32]〈54〉+[14̂](42)[3|2|5〉
+2p5 ·p1(15)[32]+m(15)(42)[43]

)

8 p2 ·p3 p̂4 ·p5 p5 ·p1〈43〉

⎤

⎥⎥
⎦ ,

(60)

where i= 3, j = 4 and

p̂4 ·p5 = p4 ·p5+
p2 ·p3
[3|2|4〉

[3|5|4〉 ,

|4̂] = |4]−
(−2 p2 ·p3)

[3|2|4〉
|3] ,

M+−−++ = [4̂|2|3〉

×

⎡

⎢⎢
⎣

(
m[4̂2][15]〈43〉− [4̂2](14)[5|1|3〉
−2p2 ·p3[15](32)+m(14)(32)[54]

)

8 p2 ·p3 p3 · p̂4 p5 ·p1〈54〉

⎤

⎥⎥
⎦ ,

(61)

where i= 5, j = 4 and

p3 · p̂4 = p3 ·p4+
p1 ·p5
[5|1|4〉

[5|3|4〉 ,

|4̂] = |4]−
(−2 p1 ·p5)

[5|1|4〉
|5] ,

M+−+−− =
m[21]〈45〉3

〈34〉
[
〈35〉2p5 ·p1+ 〈34〉[4|2|5〉

]
(p1+p2)2

+[3|2|4̂〉

×

⎡

⎢⎢
⎣

(
m(4̂2)(15)[43]− (4̂2)[14][3|1|5〉
−2p2 ·p3(15)[32]+m[14][32]〈54〉

)

8 p2 ·p3 p3 · p̂4 p5 ·p1[54]

⎤

⎥⎥
⎦ ,

(62)
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where i= 4, j = 5, and

p3 · p̂4 = p3 ·p4+
p1 ·p5
[4|1|5〉

[4|3|5〉 ,

(4̂2) = (42)+
(2p1 ·p5)

[4|1|5〉
(52) ,

M+−−+−

=
m[21]〈53〉4

√
2 〈43〉〈45〉

[
〈53〉2 p2 ·p3+ 〈54〉[4|2|3〉

]
(p1+p2)2

+[4|1|5〉

×

[
m[14][42]〈53〉+(15)[42][4|2|3〉− [14](32)[4|1|5〉

8 p5 ·p1 p2 ·p3 p̂4 ·p5[34]

]
,

(63)

where i= 4, j = 3, and

p̂4 ·p5 = p4 ·p5+
p2 ·p3
[4|2|3〉

[4|5|3〉 ,

M+−−−+ =
m[21]〈43〉3

√
2 〈45〉

[
〈53〉2 p2 ·p3+ 〈54〉[4|2|3〉

]
(p1+p2)2

+[5|1|4̂〉

×

⎡

⎢⎢
⎣

(
m(14̂)(32)[54]+ (14̂)[42][5|2|3〉
+2p5 ·p1[15](32)+m[15][42]〈43〉

)

8 p2 ·p3 p̂4 ·p5 p5 ·p1[34]

⎤

⎥⎥
⎦ ,

(64)

where i= 4, j = 3, and

p̂4 ·p5 = p4 ·p5+
p2 ·p3
[4|2|3〉

[4|5|3〉 ,

(14̂) = (14)+
(2 p2 ·p3)

[4|2|3〉
(13) , |4̂〉= |4〉+

2 p2 ·p3
[4|2|3〉

|3〉 ,

M+−−−− =
m〈54̂〉[4|2|3〉[12][45]

4 [45]2 p5 ·p1 p2 ·p3 [34]
, (65)

where

〈54̂〉= 〈54〉+
2p2 ·p3
[4|2|3〉

〈53〉 ,

M+−+++ = 0 . (66)

The amplitudes with fermion helicities −+ can be ob-
tained from those above by complex conjugation. We have
checked that in the soft gluon limit these results factorize
as expected.

4.2 Results for helicity-flip amplitudes

We now consider the helicity-flip amplitudes. These have
fermion spin polarization labels ±±. Here we find dia-
grams with internal gluons, which cannot be treated with
the external-spinor stripping procedure.Wemust therefore
evaluate each side of the diagram directly, which means

evaluating spinor products involving the internal momen-
tum. Unfortunately we are unable to evaluate such prod-
ucts as (P̂ k) where k is massive. Here P is the momentum
internal to the recursive diagram. In the previous section
these products did not occur. Note that in the massless
case round brackets do not arise, and any products 〈P̂ k〉
and [P̂ k] can be evaluated as described in [9]. Those am-
plitudes in which all gluons have the same helicity do not
pose a problem, since the internal gluon diagrams vanish
anyway:

M++−−− =m〈4̂3〉

×

[
m(15)(42)[43]+ [14](32)[4|1|5〉− [14](42)[3|1|5〉

−4 p5 ·p1 p2 ·p3[34]2[54]

]
,

(67)

where i= 4, j = 5 and

|4̂〉= |4〉+
2 p5 ·p1
[4|1|5〉

|5〉 ,

M+++++ =m[54̂]

×

[
m(14)(32)〈54〉+(14)〈42〉[3|2|5〉− (15)〈42〉[3|2|4〉

−4 p5 ·p1 p2 ·p3〈45〉2〈43〉

]
,

(68)

where i= 3, j = 4 and

|4̂] = |4]+
2 p2 ·p3
[3|2|4〉

|3] .

We have checked that in the soft gluon limit these re-
sults factorize as expected. The amplitudesM−−+++ and
M−−−−− are obtained from those above by complex con-
jugation. For the remaining amplitudes we resort to Feyn-
man diagrams.

5 Feynman results

Here we give results for q̄q→ ggg derived from Feynman
rules. Note that in a given amplitude all the helicities can
be flipped by complex conjugation. In all cases where there
is overlap, the following expressions agree with BCFW-
derived results already given:

M+−−+−

=−[4|2|3〉

×

[
m[14][42]〈53〉+(15)[42][4|2|3〉− [14](32)[4|1|5〉

8 p5 ·p1 p2 ·p3 p3 ·p4 [54]

]

+ 〈35〉

[
m[14][42]〈53〉+(15)[42][4|2|3〉− [14](32)[4|1|5〉

8 p2 ·p3 p3 ·p4 p4 ·p5

]

+
〈35〉2

〈34〉〈45〉(p1+p2)2

×

[
[14](32)+(13)[42]

[54]
+
[14](52)+(15)[42]

[34]

]
, (69)
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M+−++−

=−[4|1|5〉

×

[
−m(15)(52)[43]+ (15)[32][4|1|5〉− [14](52)[3|2|5〉

8 p5 ·p1 p2 ·p3 p4 ·p5 〈53〉

]

+[43][4|1|5〉

[
[14](52)+(15)[42]

4 p5 ·p1 p3 ·p4〈53〉[54]

]

− [43]

[
[14](52)[3|1|5〉+(15)[32][4|1|5〉−m(15)(52)[43]

4 p5 ·p1 p3 ·p4 p4 ·p5

]

−
[43]2〈35〉

2 p3 ·p4[54](p1+p2)2

×

[
[14](52)+(15)[42]

〈53〉
+
[13](52)+(15)[32]

〈54〉]

]
, (70)

M+−+−−

= [3|2|4〉

×

[
m[13][32]〈54〉− [13](42)[3|1|5〉+(15)[32][3|2|4〉

−8 p5 ·p1 p2 ·p3 p3 ·p4 [53]

]

+ 〈45〉[3|2|4〉

[
[13](42)+(14)[32]

4 p2 ·p3 p4 ·p5〈43〉[35]

]

+ 〈45〉

[
[13](42)[3|2|5〉+(15)[32][3|2|4〉+m[13][32]〈54〉]

8 p2 ·p3 p3 ·p4 p4 ·p5

]

+
〈45〉2[53]

2 p4 ·p5〈43〉(p1+p2)2

×

[
[13](52)+(15)[32]

[43]
+
[13](42)+(14)[32]

[53]

]
. (71)

The corresponding helicity-flip amplitudes can be ob-
tained from these simply by altering the types of brackets.
For example, suppose we wish to extract M−−−+− from
M+−−+− given above. We can achieve this by changing
brackets as follows:

[1k]→ (1k) , (72)

(1k)→ 〈1k〉 , (73)

where k is massless. Sandwich products such as [4|1|5〉 are
not changed. This transformation results in

M−−−+−

=−[4|2|3〉

×

[
m(14)[42]〈53〉+ 〈15〉[42][4|2|3〉− (14)(32)[4|1|5〉

8 p5 ·p1 p2 ·p3 p3 ·p4 [54]

]

+ 〈35〉

[
m(14)[42]〈53〉+ 〈15〉[42][4|2|3〉− (14)(32)[4|1|5〉

8 p2 ·p3 p3 ·p4 p4 ·p5

]

+
〈35〉2

〈34〉〈45〉(p1+p2)2

×

[
(14)(32)+ 〈13〉[42]

[54]
+
(14)(52)+ 〈15〉[42]

[34]

]
. (74)

Other amplitudes can be found by analogous bracket
alterations.

6 Summary

We have calculated all the partial spin amplitudes for the
q̄q→ ggg scattering process where q is a massive fermion.
For most of the partial amplitudes we were able to use the
BCFW recursion relations to obtain fairly compact expres-
sions. This was achieved by following the idea of [29] of
stripping lower point amplitudes of their external fermion
wave-functions before inserting them into the recursion.
We used a particular representation of massive spinors,
along the lines of the appendix of [30], to define massive
spinor products. In this method information regarding the
polarization of the fermion spins is contained in the defin-
ition of the spinor products, rather than explicitly in the
amplitude.
We derived new, compact results for the helicity con-

serving partial amplitudes. Their simplicity can be at-
tributed to the vanishing of certain 2→ 2 scattering am-
plitudes, which reduces the number of contributing re-
cursive diagrams. We were unable to treat the helicity-
flip amplitudes in the same way (except for the case
where all the gluon helicities are the same), since we
were unable to evaluate the corresponding recursive di-
agrams with internal gluons, as in such cases it is not
possible to follow the external-spinor stripping proced-
ure. For these amplitudes we instead provided expres-
sions derived from Feynman diagrams, also in terms of
massive spinor products. We have confirmed that all
the results we have presented have the correct factor-
ization properties in the soft gluon limit. Another use-
ful check is that when the partial amplitudes are com-
bined into a spin-summed cross-section, the result is
independent of the vector k0 used to define fermion
polarizations.
These results represent an interesting test of the BCFW

recursion relations [9, 10], which have not previously
been applied to five-point tree amplitudes with massive
fermions. The massive spinor products we used are well
suited to such calculations, though there are issues to
be resolved (see above). Application of these techniques
to higher order processes with massive fermions, such as
q̄q→ gggg, should be possible though would be accom-
panied by an increase in complexity. This increase is,
however, expected to be significantly less than the corres-
ponding increase in complexity using standard Feynman
diagram techniques.

Acknowledgements. KJO acknowledges the award of a PPARC

studentship. We are grateful to Valery Khoze for useful
discussions.

Appendix A: Notation and conventions

We have used products of Dirac spinors:

[ij] = ū+(i)u−(j) , 〈ij〉= ū−(i)u+(j) ,

(ij) = ū±(i)u±(j) , (A.1)
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with massive pi,pj . To evaluate these we use two arbitrary
4-vectors k0 and k1, such that

k20 = 0 , k
2
1 =−1, k0 ·k1 = 0 . (A.2)

Then

[ij] =
(pi ·k0)(pj ·k1)− (pj ·k0)(pi ·k1)− iεµνρσk

µ
0 p
ν
i p
ρ
j k
σ
1√

(pi ·k0)(pj ·k0)
,

(A.3)

〈ij〉=
(pj ·k0)(pi ·k1)− (pj ·k1)(pi ·k0)− iεµνρσk

µ
0 p
ν
i p
ρ
j k
σ
1√

(pi ·k0)(pj ·k0)
,

(A.4)

(ij) =mi

(
pj ·k0
pi ·k0

) 1
2

+ i↔ j , (A.5)

wheremi is negative if i is an antiparticle. Different choices
of k0 correspond to different choices of the quantization
axis of a massive fermion’s spin, as described in Sect. 2.
We use the notation

ū+(i) /p u
+(j) = [i|p|j〉= [ip]〈pj〉+(ip)(pj) , (A.6)

ū−(i) /p u
−(j) = 〈i|p|j] = 〈ip〉[pj]+ (ip)(pj) . (A.7)

Whereas for massless vectors ki,kj we have the familiar re-
lation 2ki ·kj = 〈ij〉[ji], in the massive case this is extended
to

2pi ·pj = 〈ij〉[ji]+ (ij)
2−2mimj . (A.8)

For any massive i,j and massless k, l we have

(ik)(jl) = (il)(jk) , (A.9)

(ik)[li]+ [ik](li) =mi[lk] , (A.10)

ū±(pk) /pi u
∓(pl) = 0 . (A.11)

The Schouten identity holds,

〈a b〉〈c d〉+ 〈a c〉〈d b〉+ 〈a d〉〈b c〉= 0 . (A.12)

For gluon polarization vectors we use

ε+µ (p, k) =
ū−(k) γµ u

−(p)
√
2 〈kp〉

, (A.13)

ε−µ (p, k) =
ū+(k) γµ u

+(p)
√
2 [pk]

, (A.14)

which take the slashed form

/ε
+(p, k) =

√
2
u+(k)ū+(p)+u−(p)ū−(k)

〈kp〉
, (A.15)

/ε
−(p, k) =

√
2
u+(p)ū+(k)+u−(k)ū−(p)

[pk]
. (A.16)

We use a shorthand form for the amplitude in which we
display only the helicities of the particles involved. So for
example,

M(q̄+1 , q
−
2 ; 3

+, 4−, 5+)∼M (+−+−+) . (A.17)

Appendix B: Color decomposition

The calculation of multi-parton scattering amplitudes in
perturbative QCD becomes problematic very quickly as
the number of partons increases, due to the sheer number
of diagrams and the complicated gluon self-interactions.
One technique to circumvent this is to split the set of all
Feynman diagrams contributing to a particular amplitude
into gauge invariant subsets. Then different gauges can
be used in the evaluation of each subset. This simplifies
the overall calculation considerably. This is known as color
decomposition [33–35]. Each subset of Feynman diagrams
is called a partial amplitude. We use the normalization

Tr(TA TB) = δab . (B.1)

where the T i are matrices of the fundamental represen-
tation of SU(3). This convention leads to color-ordered
Feynman rules as given in [36]. The color decomposition for
processes with a pair of quarks is then

A(q̄, q ; g1, g2sgn) =
∑

σ

(
T aσ(1) . . . T aσ(n)

)
ij

×M(q̄, q ; gσ(1), gσ(2)sgσ(n)) .

(B.2)

Here σ is the set of all distinct cyclic orderings of the glu-
ons. The color information in a given amplitude is con-
tained purely in the group theoretical prefactors, while all
the kinematical information is contained in the partial am-
plitudesM(σ). It is useful to note that amplitudes in QED
can be obtained from amplitudes in QCD by replacing all
the color matrices TA with the identity matrix. For a re-
view of color decomposition, the reader is directed to [36].
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